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A description of MHD turbulence at  low magnetic Reynolds number and large inter- 
action parameter is proposed, in which attention is focussed on the role of insulating 
walls perpendicular to a uniform applied magnetic field. The flow is divided in two 
regions: the thin Hartmann layers near the walls, and the bulk of the flow. I n  the 
latter region, a kind of electromagnetic diffusion along the magnetic field lines (a 
degenerate form of Alfv6n waves) is displayed, which elongates the turbulent eddies 
in the field direction, but is not sufficient to generate a two-dimensional dynamics. 
However the normal derivative of velocity must be zero (to leading order) at the 
boundaries of the bulk region (as a t  a free surface), so that when the length scale 1, 
perpendicular to  the magnetic field is large enough, the corresponding eddies are 
necessarily two-dimensional. Furthermore, if I ,  is not larger than a second limit, the 
Hartmann braking effect is negligible and the dynamics of these eddies is described 
by the ordinary Navier-Stokes equations without electromagnetic forces. MHD then 
appears to offer a means of achieving experiments on two-dimensional turbulence, 
and of deducing velocity and vorticity from measurements of electric field. 

1. Introduction 
There is increasing interest in the study of two-dimensional turbulence. Indeed, it 

is thought to provide a good schema for large scale motions of geophysical fluids, and 
perhaps for coherent structures recently observed in mixing layers. Contradictory 
predictions have been made about the rather singular properties of two-dimensional 
homogeneous and isotropic turbulence, and direct numerical simulations are not 
sufficiently reliable to decide between them. It is therefore clear that laboratory 
observations are of crucial interest. But any attempt is confronted with the necessity 
of inhibiting the natural instability of two-dimensional structures which quickly 
spread out into three dimensions. 

Body forces such as Coriolis forces in rotating fluids and electromagnetic forces in 
liquid metals moving under the influence of a uniform magnetic field have been 
recognized as good candidates for many years (Lehnert 1955). Indeed, both are 
strictly balanced by pressure gradients in any two dimensional flow (in a plane per- 
pendicular to the magnetic field or the rotation vector) and have some stabilizing effect 
on three-dimensional instabilities. However, the Coriolis forces do not change the total 
energy but transfer it by inertial waves while the elehromagnetic forces are purely 
dissipative in laboratory conditions where the magnetic Reynolds number is very 
small. So the effect of electromagnetic forces on the three-dimensional perturbations 
is easier to  deal with. While two-dimensional turbulence is effectively observed in 
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rotating tanks of small depth (Colin de Verdiere 1980) important three-dimensional 
perturbations arise in deeper tanks (Hopfinger & Browand 1982). A similar behaviour 
occurs for turbulent flows in a strong uniform magnetic field, as becomes apparent 
from examining the two kinds of experiments which have been performed during the 
last ten years: 

(a) In  rectangular insulating duct flows placed in a strong enough transverse 
magnetic field, numerous characteristics of two-dimensional turbulence have been 
observed. The source of turbulence does not seem to have a preponderant influence; 
whether this is the M-profile instability, or the wake instability behind a grid or 
behind an array of cylinders parallel to the magnetic field, results such as summarized 
by Branover (1978) or by Lielausis (1975), seem to be quite general and show that 

(i) Velocity correlations along the magnetic field direction are very good over the 
whole channel width (Votsish & Kolesnikov 1976); 

(ii) The velocity component parallel to the magnetic field is much smaller than the 
other ones, as indirectly shown by turbulent diffusion of a contaminant (Kolesnikov & 
Tsinober 1974, Sommeria 1980); 

(iii) The energy decay is very slow while the integral scale of the turbulence grows 
rather fast (for example Votsish & Kolesnikov 1976). 

( b )  On the other hand, in experiments reported by Alemany et al. (1979) where 
turbulence is studied behind a grid moving in an axial magnetic field (produced in 
a solenoid) the dynamics was shown to be quite different: 

(i) The integral length scales in the field direction increases rather slowly when 
the field is increased; the increase of the perpendicular length scales seems limited by 
the square root of the interaction parameter; 

(ii) The three velocity components are of the same order of magnitude; 
(iii) Most noticeably, the energy decay is very fast, much faster than without mag- 

netic field in the same facility ( t - l . 7  instead of t - l . 2 ) .  This is a consequence of the Joule 
effect and reveals important departures from two-dimensionality . 

The apparent discrepancy between these two kinds of results have led to contro- 
versial ideas about laboratory MHD turbulence and one of the purposes of this paper 
is to reconcile the two. Theories of homogeneous MHD turbulence in a uniform mag- 
netic field, using dimensional analysis and two point closures (Alemany et al. 1979) 
predict a three-dimensional dynamics and agree with the latter kind of experimental 
results. We intend here to explain the two-dimensional dynamics observed in duct 
flows in terms of the effect of insulating walls. It is clear that the walls should have an 
important direct effect on turbulent structures, the length scale of which is equal to 
or larger than the channel width. The point is that turbulent structures are markedly 
elongated in the magnetic field direction, when the field is strong, so that the direct 
effect of the walls which are perpendicular to the field becomes important, even when 
the grid mesh is much smaller than the channel width. This direct effect is dramatic 
and rather trivial when the walls are highly conducting: in this case turbulence has 
been observed to be very quickly damped in a strong magnetic field (Platnieks & 
Freibergs 1972). So we are interested here in the case of insulating walls when turbu- 
lence persists over a large distance and exhibits some two-dimensionality. Note that 
the effect of walls parallel to the magnetic field, remains restricted to side layers 
which are passive in character and do not react back upon the bulk flow, we shall not 
consider the effect of such walls. 
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We intend then in this paper to analyse the direct effect of the walls which are 
perpendicular to the field on a turbulent structure as a function of its length and 
velocity scales. The analysis is limited to the asymptotic case of strong magnetic 
fields (large interaction parameter and Hartmann number) in which evidence of two- 
dimensional turbulence has been experimentally obtained. The final result is presented 
in 9 4, where the appropriate conditions for getting a wide range of two-dimensional 
turbulent structures are discussed. For this investigation, the flow is divided into two 
very different parts: the Hartmann boundary layers and the bulk of the flow. In  9 3, 
concerned with the bulk of the flow, we point out a diffusion mechanism along magnetic 
field lines, through which motions in planes perpendicular to the field are correlated. 
These considerations lend some physical insight to the turbulence dynamics and lead 
to conclusions closely related to those of Alemany et al. (1979). A study of the Hart- 
mann layers is carried out in $3,  resulting in boundary conditions for the bulk of the 
turbulent flow, from which are deduced conditions for the existence of two-dimen- 
sional turbulence. The complete flow is in fact always three-dimensional because of 
the no slip condition at  the walls; as a consequence, there is a Hartmann braking 
effect for the two dimensional bulk of the flow, which is also calculated in 9 3. 

2. Some properties of MHD turbulent flows at large interaction para- 
meter 

An incompressible and electrically conducting fluid (e.g. a liquid metal) is assumed 
to be in turbulent motion in a uniform magnetic field B. Let us make I, and U the 
typical length-scale and corresponding velocity for a turbulent eddy in the directions 
perpendicular to the field (the transverse directions for conciseness). The following 
conditions are assumed to be valid over a wide range of length scales including energy 
containing ones. 

Re = Ul,/v $ 1 N = uB21,/pU B 1 
(1) { R m = p u l , U <  1 r M =  (NRe)*$  1 

where p, p ,  u, v stand for magnetic permeability, density, electrical conductivity and 
kinematic viscosity respectively. Quantities of interest such as velocity V, current 
density j, pressure 9, and, electric potential 4, then satisfy the following equations 
(where d/dt = a/at + v . V) : 

dv 1 1 _ -  - --V$+vV2v+-j x B, 
dt P P 

V.v = V.j = 0, (3) 

j = u(vxB-V#).  (4) 

Notice that if the magnetic Reynolds number Rm is very small, a condition satisfied 
in most laboratory experiments, the fluctuating magnetic field created by eddy current 
density is negligible in comparison with B. By eliminating current density, and includ- 
ing the irrotational part of the Lorentz force in the pressure p, the equation of motion 
becomes (Roberts 1967, p. 136). 

17-2 
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where A-l is an inverse of the Laplacian operator, and where the z-co-ordinate is taken 
along the direction of the magnetic field (the parallel direction). 

Under the conditions ( l ) ,  the energy-containing eddies are rapidly lengthened in 
the B direction even if the turbulence was initially isotropic (Alemany et al. 1979) 
and the following approximations are valid. 

Using gradient V, and Laplacian A, operators in a transverse plane and substantive 
derivative associated with the motion in that plane (DlDt  = a/at  + vL.  VJ,  the equa- 
tions of motion then become: 

v,.v, = 0. (7) 

The parallel component of vort,icity w, (but not any other component) satisfies: 

Notice that in this kinematically quasi-two-dimensional situation, motions in 
different transverse planes interact only through electromagnetic forces and viscosity, 
but the latter is much weaker when the Reynolds number is large. If we refer to a 
given eddy for which the application of the Ayl operator reduces to multiplication by 
( - ZF), the electromagnetic force looks like a unidirectional diffusion term. This diffu- 
sion in the field direction may be seen as a relic of Alfv6n wave propagation when 
am g 1 (Roberts 1967, p. 137). It has the unusual property of being characterized by 
a diffusivity 01 = aB21:/p depending on the length scale 1, of the eddy considered. 
As a consequence, electromagnetic forces tend to suppress velocity differences between 
transverse planes and, if d denotes their spacing, the duration of this phenomenon is 

t ,  E (p/crB2)d2/E2. (9) 

If the turbulence is homogeneous, the net effect of this mechanism is Joule dissi- 
pation of energy, as analysed by Alemany et al. (1979) in Fourier space. But it is 
remarkable that however globally dissipating, this diffusion mechanism may be locally 
a source of momentum, vorticity and kinetic energy, and this could explain how two- 
dimensional turbulent eddies build up  from initially three-dimensional ones. 

Figure 1 shows a plausible picture of the deformation of a turbulent structure of 
initial typical size I during its turnover time ttu. Nonlinear transfer would by itself 
rotate the eddy and appreciably promote its disruption into smaller eddies (size r i l ) ,  
but electromagnetic diffusion propagates this motion all along a cylinder of length 
l,, N l lN* during time ttu. The main consequences of this are: 

(i) inhibition of energy transfer towards small scales and some slight increase of 
the eddy transverse size which is quite different from the inverse cascade of energy 
in two-dimensional turbulence. 

(ii) the attainment after some transitory phase of an anisotropic state in which, for 
each turbulent structure, 

1 l / L  (10) 
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L 1 :  

FIGURE 1. Plausible evolution of an eddy of initial size L in all directions during time t t ,  for an 
observer moving with t'he core of the eddy (-- initial eddy; - - - - - final eddy when B = 0; 
__ final eddy when 2LT % 1). 

(remember that N is the interaction parameter for a given eddy). Of course this last 
conclusion applies only to  structures for which I, N* is smaller than the spacing of 
the walls perpendicular to  the magnetic field. 

3. The influence of transverse insulating walls 
The key point which elucidates the influence of the transverse walls on the turbulent 

bulk of the flow, when the interaction parameter N and the Hartmann number M are 
both very large, is the fact that inertia is small, compared to electromagnetic and 
viscous effects in the Hartmann layer. This essentially follows from the extremely 
small thickness of this layer 

8, = (pV/rB2)* = l J M ,  

which depends only on the fluid properties and the strength of the magnetic field 
(&H = 30 pm in mercury for B = I T). As a consequence the equations of motion in 
the Hartmann layer are linear to a good approximation, and the flow in this layer 
depends a t  a given time p l y  on the instantaneous outer velocity (e.g. secondary flows 
and inertia effects are negligible in the layer). I n  other words, the Hartmann layer 
behaves as if the outer flow were locally steady and uniform in transverse directions. 

To be more accurate, the small effects of unsteadiness and inhomogeneity of the 
outer flow can be taken into account by means of a second-order Hartmann theory, 
based on developments in powers of the two small parameters N-l  and M-2. This 
straightforward but heavy calculation, which is summarized in the appendix, precisely 
justifies the linear approximation when N and M are both much larger ,than unity. 

Numerous experimental results also support this linear approximation and confirm 
the stability of this thin Hartmann layer. For example the experimental skin friction 
in ducts is given by laminar laws, despite the presence of turbulence. More direct 
confirmation is achieved in the simple educational experiment of Heiser & Shercliff 
(1965) or in the annular flow of Gel'fgat et al. (1971). 

The Hartmann layer along an insulating wall may be seen as a current sheet, the 
current content J per unit length of which is given (Heiser & Shercliff 1965) by 

J = (f lpv)& p x v(x, y, 0, t ) ,  (11) 
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where v(x, y, 0,  t )  is the velocity near the wall (but outside the Hartmann layer). The 
origin of the z axis is taken at the wall and its positive unit vector (3 is directed toward 
the fluid. The following important properties follow directly from the relation (1 1). 

( a )  Orthogonality of the quasi two-dimensional eddies with the walls 

Because of current conservation, a current density j ,  necessarily exists outside the 
Hartmann layer, such that (since the wall is insulating). 

jz(x, y, 0, t )  = - v,. J = (V)+ w,(x, Y, 0, t )  (12) 

where w, is the component of vorticity. Alternatively, taking the curl of Ohm’s law 
twice yields 

To be consistent with previous approximations leading to equations (6)  and (7), we 
have to replace A by A,. Now eliminating j ,  between (12) and the z component of (13), 
the electrical boundary conditions at  an insulating wall can be transformed into a 
single condition on transverse vorticity, 

Aj = U B ~ C O / ~ Z .  (13) 

Since this relation is valid at any position (x, y )  along the wall, it necessarily requires 
that 

- av, az (x, y ,  0, t )  = 0 (2,) - = o(&) , 

where I , ,  is the natural parallel length scale introduced by relation (10). Since U/l, ,  
would be a typical value of av,/az in the absence of wall effects, the order of magnitude 
(15) means that axes of quasi-two-dimensional eddies have their ends perpendicular 
to the walls to a good approximation, although they could bend in the bulk of the 
flow. This condition can be physically interpreted using the notion of electromagnetic 
diffusion introduced in 5 2: there is a negligible flux of momentum through the insulat- 
ing walls. 

( b )  Hartrnann braking of the outer turbulence 

The current sheet in the Hartmann layer, which gives rise to the current density 
j,(x, y ,  0 ,  t )  (12), must necessarily be closed in the bulk of the flow, generating there 
some braking and thus transferring the influence of viscosity. More precisely, when 
the walls are everywhere insulating, current conservation requires that : 

v, .IOaj,dz = 0, 

where a is the spacing between the walls; this means that no external source of current 
exists, and reduces to the usual condition 

if the outer flow is uniform. The integral in (16) is composed of two parts, the current 
sheets J ( 0 )  and J ( a )  in the Hartmann layers, and the current integrated in the bulk 
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of the flow. These are both related to  velocity, the former by ( l l ) ,  and the latter by 
the equation of motion (2). After these substitutions, the relation (16) takes the form: 

where the brackets ( ) indicate the average between z = 0 and z = a. 
Equation (17) clearly demonstrates the braking of the outer flow by the Hartmann 

effect: the last term on the left-hand-side is exactly the loss of vorticity due to  the 
viscous stresses in the Hartmann layer, which is globally transferred into the outer 
turbulence by the return of electric currents. If two-dimensionality is well achieved 
the brackets in (17) can be omitted ( $ 4  shows how and when this is realized) and the 
equation of motion for the two-dimensional velocity field V (2, y, t )  can be derived: 

dt P 

It is finally of interest to  note that this braking does not depend on the turbulent 
scales, provided that M (constructed from these scales) is very large, its typical time- 
scale being 

( c )  Interpretation of electric Jield measurements 

Measurements of electric field, including the fluctuating part, have often been used to  
get information on turbulent flows (Lielausis 1975, Rosant 1976, Moreau 1978). The 
main idea is that in the presence of a magnetic field B the turbulent structures of 
typical scales U and 1, are submitted to  potential differences of which a representative 
value is q5 - BUZ, and which generate parallel electric currents (essentially related 
to  the defect of two-dimensionality) : 

j ,  z a$/Z,, z aBU/N*, (20) 

and transverse electric currents, which follow from current conservation 

j 2 uBU(l,/l,,) E uBU/N.  

These orders of magnitude mean that the relation E, = - v  x B is satisfied with an 
error of the order of N - l ,  and then justify deduction of the turbulent velocity from the 
fluctuations of the electric field when the magnetic field is strong enough. 

Now, in the turbulent core between two insulating transverse walls, the electric 
current can be calculated precisely by condition (16) together with relation (11). 
When two-dimensionality is well achieved, using Ohm’s law yields the expression for 
the transverse electric field: 

E, = - ( 1  - 21,/aM) (V x B). (22) 

Since 1,/M does not depend on I,, this expression establishes the required connection 
between E, and V. 

From relation (22) and the equation of continuity of electric current with the 
boundary conditions (12), an expression for E, in terms of the vorticity R can be 
deduced, viz. 

E,= c ) * R ( l - : ) .  
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An original method of vorticity measurement for the two-dimensional flow is thus 
provided by this result. Nevertheless, the order of magnitude of the corresponding 
potential differences is generally very small. For example in mercury, if the two 
electrodes measuring the electric field are 1 cm distant, and the turbulent scales 
U = 1 cm/s and 1, = 1 cm, the potential difference is of order of 0.3 pV,  thus a t  the 
very limit of experimental detectability. But some expedients should be used t o  
increase this value. One could artificially increase the Hartmann layer thickness by 
putting some controlled rugosity at the wall near the probe. One could also fix a 
conducting sheet on the wall to increase the current content. If d is the conductivity 
and d the thickness of the sheet, the electric field would then become 

E, = [p$+;d]  Q,(l-;) 

4. The behaviour of MHD turbulence between insulating walls 
The purpose of this section is to  deduce from the relations (15) and (18) the main 

rules governing the dynamics of a turbulent velocity field when the interaction par- 
ameter is large. Though the analysis is developed in the particular case of turbulence 
which is assumed to be homogeneous in a plane perpendicular t o  B, it has nevertheless 
some relevance for other kinds of turbulent flows, such as duct flows with or without 
M-shaped mean velocity profiles. 

It follows from Alemany et al. (1979) that  the dynamics of MHD homogeneous 
turbulence is essentially governed by an equilibrium between two competing mecha- 
nisms: Joule effect which tends to dissipate energy of wave vectors not perpendicular 
to the applied magnetic field, and inertial transfers which tend to  restore isotropy. 
This description is quite in agreement with precise calculations using a two-point 
closure technique, which show that angular energy transfer (from the energy-contain- 
ing zone to  the cones where Joule dissipation is predominant) is much larger than 
radial energy transfers, and is localized in a narrow fringe a t  the border of the Joule 
cones. Figure 2 (left-hand side) illustrates this description. The energy-containing zone 
is characterized by an angle r$ such that the Joule time t j  and the eddy turnover time 
t,, are equal (4 M N-*, if N % 1) .  Alemany et al. deduced from this quasi-steady equili- 
brium that, since the local transfer time [k3E(k,t)]-4 must be independent of k, just 
as the Joule time is, the energy spectrum E ( k , t )  must vary like k-3 in a self-similar 
range. Furthermore, the energy equation (8Elat E - E(k3E)4 demands that the energy 
spectrum decays as t P .  The properties of this self-similar range with E ( k ,  t )  2 P k - 3  
are fairly well confirmed by experiments and two-point closure calculations. 

Now the influence of the insulating walls perpendicular to  the magnetic field has 
to be introduced in this context. It is first expressed by the constraint (15) which means 
that the parallel half wavelength of the energy-containing eddies cannot vary con- 
tinuously, but must be either infinite (for exactly two-dimensional eddies) or an 
integer fraction a / n  of the duct width (n is an integer). I n  other words energy must 
be concentrated in wave vectors with their extremities on a set of planes such that 
k, = nn/a (figure 2) .  Otherwise, except possibly during an initial phase, energy- 
containing vectors can only lie on the part of this set of planes which is outside the 
Joule cone: k, < k ,  N-4. Thus the first influence of the insulating walls consists in 
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FIGURE 2. Left-hand side : Localization of (a)  energy-containing, ( b )  dissipating, and ( c )  trans- 
ferring zones in homogeneous turbulence after Alemany et al. (1  979). Right-hand side: Quantiza- 
tion of the energy-containing zone (-) when perpendicular walls are insulating. 

quantizing the Fourier space, quite an unusual situation in turbulence, which how- 
ever does not much affect the small scales. 

The condition for restricting energy-containing eddies to exactly two-dimensional 
ones appears now very clearly, namely k ,  < (7r/a) N-*, i.e. since the interaction par- 
ameter depends on k,, 

k ,  < 7r/a(aB2a/pU)). (24) 

But, so far, it can only be concluded that these turbulent structures are kinematically 
two-dimensional. First of all their behaviour should differ from that of exactly two- 
dimensional turbulence in that they support the angular transfer to the dissipative 
levels k, = nn/a. But one is easily convinced that this argument fails. Since inertial 
transfers require triad interactions, if no energy is present in these dissipative levels, 
energy transfer to them is also zero. One can also invoke locality of angular energy 
transfer displayed by Alemany et al. (1979) to conclude that this transfer, if any, 
would only reach the vicinity of the plane k, = 0 (but it is inhibited by the quantization) 
and would not be able to reach even the first dissipative Ievel k, = n/a.  

Secondly, the dynamics of these two-dimensional structures is not governed by the 
ordinary two-dimensional Navier-Stokes equation, but by equation ( 18) in which 
Hartmann braking effect is present. Unlike the preceding argument against pure two- 
dimensionality, this one cannot exactly fail. It can however become a negligible 
restriction if the Hartmann decay time t ,  (19) is much larger than the local turnover 
time. This condition provides a second limit 

and one can finally conjecture that a range of wavenumber k ,  exists which are not only 
kinematically, but also dynamically two-dimensional. Since these limits depends on the 
velocity scale ( U  (kLE(k,))*), it is useful to plot them in a (k l ,  E )  diagram (figure 3). 
Two other limits ( N  = 10 and Re = 10) have also been plotted to indicate the domain 
of validity of the preceding results. 

It is interesting to  note that two-dimensional ordinary turbulence also obeys a 
spectral decay law E(k, t )  cc t-2k-3, corresponding to an enstrophy cascade (see 
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FIGURE 3. The three typical kinds of MHD turbulence between insulating walls perpendicular 
to a strong uniform magnetic field. 0: Condition (37) for kinematically two-dimensional tur- 
bulence; 0 :  condition (38) for Hartmann braking effect negligible; 0: N = 10; @: Re = 10. 
(a )  : Equilibrium between angular transfer and Joule effect; (b)  : Dynamically two-dimensional 
eddies ; (c )  : two-dimensional eddies with Hartmann effect predominant. 

Batchelor 1969, Tatsumi & Yanase 1977). In most of the experiments mentioned in 
the Introduction, conditions were such that for the largest scales two-dimensionality 
without the Hartmann braking effect was fairly well achieved (suggesting the rele- 
vance of an enstrophy cascade) whereas for smaller scales angular transfer and Joule 
dissipation give the only reasonable explanation of the observed t-2k-3 law. It is 
noteworthy that no discontinuity between these two laws has been observed. This 
suggests that the coefficient of t-2k-3 could be unique and universal, like the Kolmo- 
goroff and Batchelor constants. 

5. Conclusions 
MHD turbulence between insulating walls perpendicular to a strong magnetic field 

( N  % 1) appears to be governed by essentially two mechanisms. One is the electro- 
magnetic diffusion into which Alfvdn waves degenerate at  the scale of the laboratory. 
The other is the well known Hartmann effect, slightly modified by the presence of 
inertia and vorticity in the external velocity field. Neither of these is new, and their 
combined influence has been studied in textbooks (e.g. Shercliff 1965, pp. 160-6), but 
their relevance and importance in turbulence studies has not been recognized 
previously. 

One of the most striking consequences of the relations (14) and (15) is the necessary 
orthogonality of energy-containing eddies and insulating walls, entailing some 
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quantization of the Fourier space and hence an explanation of the previously observed 
two-dimensionality. Several conclusions are also quantitative, e.g. equation (1  8) for 
the external velocity field, and relations (22) and (23) between electric field and 
velocity or vorticity. 

In the context of the new possibilities offered by MHD for performing experiments 
on ordinary two-dimensional turbulence, our two main results are (a )  the formulation 
of conditions (24) and (25) for the existence of this kind of disordered motion, and ( 6 )  
the recognition that MHD offers interesting new diagnostic techniques. Indeed all 
the components of the electric field are now precisely related to the velocity field. 
Measuring the parallel component in the vicinity of the wall would directly give the 
parallel vorticity, a quantity of prime interest in the context of intermittency studies. 
And relation (22) shows that the perpendicular components of the electric field are 
proportional to the velocity. 

The authors have benefitted from useful discussions with A. Alemany and M. Lesieur. 

Appendix. Second-order calculation of the Hartmann layer 
Let us introduce the following dimensionless variables: 

x = l,x, v, = uu, p = p P P ,  
y = l,q, vUy = UV, $ = BU1,$, 

The length scales are suggested by the discussion of the beginning of $ 3  and the 
order of magnitude of u, is obtained by considering it as resulting from secondary 
flows in the Hartmann layer. The basic equations (2)-(4) may now be written: 

where, for the sake of conciseness, we denote: 
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Limiting attention to the case of insulating walls, the boundary conditions are 
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I n  the range of strong magnetic fields in which we are interested, the smallness of 
the two independent parameters l / i V  and 1/M2 permits a double perturbation tech- 
nique to solve these equations. We therefore write each non-dimensional function q as 

1 1 

To first order the leading terms, all placed on the left-hand side of equations (27),  
give the classical Hartmann solution, the only difference being the possible variations 
of outer quantities with x, 7, r. 

with the constraints V,. V = 0 

By introducing these expressions in the small terms of equations (27) we get the second 
order solution 

q = q'0) (x, 795, 7 )  + P ( X ,  7 , L r )  + p q'2 ' (x ,  7 , 5 , 7 )  + - * - * 

uy) = V(x, 7, r )  [I - e-51, P O )  = W ( x ,  7, T ) ,  qP = # O ) ( x ,  7, r ) ,  

V, $(O) = V x B. 

5 dV (e;2C e J  
2 dr  

u(1) = - e - C I  + ( V . V , ) V  

The velocity z component can then be deduced from the continuity equation in (27) 

~ ( 0 )  = [ - + &-C + 4 - 2 5  + 9ce-S - r i  1 e - 2 51 v, * [ ( V .  V,) VI. 2 4  
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